松下传感器阐述人们利用红外传感技术开发了许多应用,例如热成像、人体探测以及夜视等。对于红外能量的量化,使用户能够确定目标的温度以及热行为。红外热传感和成像仪实现了被动、非侵入式的物体表面温度测量,并能够绘制其温度分布图谱。随着物体表面温度的升高,其辐射光谱的强度也会相应增强。这使我们可以通过远程测量人体或目标物体发射出的能量来确定其温度。红外探测器主要分为两类——红外光子探测器和红外热探测器。
红外光子探测器利用材料和电子间的相互作用,吸收被测物体表面发出的红外辐射。通过吸收电子产生的电能分布变化,输出红外探测信号。红外光子探测器每个单元对入射辐射能量的吸收具有波长选择性。红外光子探测器具有完美的信噪比和快速响应性能。但是,红外光子探测器的缺点是需要对其进行低温冷却。而冷却要求,是基于半导体光子探测器的红外系统获得广泛应用的主要障碍。因为这使得光子探测器红外系统变得庞大、笨重、昂贵,而且使用不便。
松下传感器阐述一直以来,高成本问题严重限制了消费类市场红外系统的发展。红外热探测器优势包括宽广的波长响应范围、无需冷却、高温稳定性、高信噪比以及较低的成本。红外热探测器主要分为热释电、热电堆和微测辐射热计。
松下传感器阐述红外热释电传感器热释电材料吸收热辐射,在晶体材料间产生静态电压信号。但是,热释电材料在持续的红外辐射下,其输出的静态电压信号会减弱,需要对其进行周期性的刷新。热释电探测器可以实现大规模批量生产。它们凭借防盗系统和自动照明开关等应用,在消费类市场逐渐找到了切入口。热释电探测器也被应用于高性能气体分析、火焰探测器等科学仪器。另一方面,对于静态温度测量应用,热释电探测器仍然相对比较昂贵,需要包含一些机械部件。